Skip to main content
Log in

Generation of Voronoi Grid Based on Vorticity for Coarse-Scale Modeling of Flow in Heterogeneous Formations

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

We present a novel unstructured coarse grid generation technique based on vorticity for upscaling two-phase flow in permeable media. In the technique, the fineness of the gridblocks throughout the domain is determined by vorticity distribution such that where the larger is the vorticity at a region, the finer are the gridblocks at that region. Vorticity is obtained from single-phase flow on original fine grid, and is utilized to generate a background grid which stores spacing parameter, and is used to steer generation of triangular and finally Voronoi grids. This technique is applied to two channelized and heterogeneous models and two-phase flow simulations are performed on the generated coarse grids and, the results are compared with the ones of fine scale grid and uniformly gridded coarse models. The results show a close match of unstructured coarse grid flow results with those of fine grid, and substantial accuracy compared to uniformly gridded coarse grid model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

External area of control volume

A i :

Area of control volume i

C :

Compressibility

d max :

Maximum spacing parameter

d min :

Minimum spacing parameter

f :

Fluid cut

E:

Error

G:

Source term

\({\vec{g}}\) :

Gravity acceleration

h :

Gridblock length

\({\vec{i}, \vec{j}, \vec{k}}\) :

Unit vectors

K :

Permeability tensor

k :

Permeability

k r :

Phase relative permeability

\({\bar{{k}}}\) :

Upscaled permeability

L :

Spacing parameter

M :

Number of block edges

N :

Number of source points

\({\vec{n}}\) :

Outward normal unit vector

P :

Fluid pressure

q p :

Well flow of phase p

S:

Fluid saturation

t :

Time

\({\vec{u}}\) :

Velocity vector (\({\vec{u}=u_x \vec{i}+u_y \vec{j}+u_z \vec{k}}\))

UL:

Upscaling level

V :

Control volume

β :

Relaxation factor

Φ:

Phase potential

\({\varphi}\) :

Porosity

λ:

Mobility

μ :

Fluid viscosity

ρ :

Fluid density

\({\vec{\omega}}\) :

Vorticity vector

ψ :

Intensity of source element

is:

Internal source element

r :

Iteration number

t :

Time level

c:

Coarse

f:

Fine

n :

nth Source

o:

Oil

p:

Phase

T:

Total

w:

Water

wf:

Well flowing in P wf

x :

x direction

y :

y direction

z :

z direction

References

  • Ashjari M.A., Firoozabadi B., Mahani H., Khoozan D.: Vorticity-based coarse grid generation for upscaling two-phase displacements. J. Petrol. Sci. Eng. 59(3), 271–288 (2007)

    Article  Google Scholar 

  • Ashjari M.A., Firoozabadi B., Mahani H.: Using Vorticity as an Indicator for the Generation of Optimal Coarse Grid Distribution. Transport in Porous Media 75(2), 167–201 (2008)

    Google Scholar 

  • Ashjari M.A., Mahani H., Firoozabadi B., Audigane P.: Improved upscaling of reservoir flow using combination of dual mesh method and vorticity-based gridding. Comput. Geosci. 13, 57–78 (2009)

    Article  Google Scholar 

  • Aziz K.: Reservoir simulation grids: opportunities and problems. JPT 45(7), 658–663 (1993)

    Article  Google Scholar 

  • Barker J.W., Thibeau S.: A critical review of the use of pseudo relative permeabilities for upscaling. SPE Reserv. Eng. 12, 138–143 (1997)

    Google Scholar 

  • Bear J.: Dynamics of Fluids in Porous Media. American Elsevier Publishing Co, New York (1972)

    Google Scholar 

  • Begg S.H., Carter R.R., Dranfield P.: Assigning effective values to simulator gridblocks parameters for heterogeneous reservoirs. SPE Reserv. Eng. 4, 455–464 (1989)

    Google Scholar 

  • Castellini, A.: Flow based grids for reservoir simulation. MS Dissertation, Stanford University (2001)

  • Chen Y., Durlofsky L.J.: Adaptive local-global upscaling for general flow scenarios in heterogeneous formations. Transp. Porous Media 62, 157–185 (2006)

    Article  Google Scholar 

  • Chen C.-Y., Meiburg E.: Miscible porous media displacements in the quarter five-spot configuration. Part 2. Effect of heterogeneities. J. Fluid Mech. 371, 269–299 (1998)

    Article  Google Scholar 

  • Chen Y., Durlofsky L.J., Gerritsen M., Wen X.H.: A coupled local–global upscaling approach for simulating flow in highly heterogeneous formations. Adv. Water Resour. 26, 1041–1060 (2003)

    Article  Google Scholar 

  • Chen, Y., Durlofsky, L.J., Wen, X.H.: Robust Coarse Scale Modeling of Flow and Transport in Heterogeneous Reservoirs. 9th European Conference on the Mathematics of Oil Recovery, Cannes, France (2004)

  • Christie M.A.: Upscaling for reservoir simulation. J. Petrol. Technol. 48, 1004–1010 (1996)

    Google Scholar 

  • Christie M.A., Blunt M.J.: Tenth SPE Comparative Solution Project: a comparison of upscaling techniques. SPE Reserv. Eval. Eng. 4, 308–317 (2001)

    Google Scholar 

  • Darman, N.H., Durlofsky, L.J., Sorbie, K.S., Pickup, G.E.: Upscaling immiscible gas displacements: quantitative use of fine grid flow data in grid coarsening scheme. Paper SPE 59452 presented at the SPE Asia Pacific Conference on Integrated Modelling for Asset Management, Yokohama, Japan, 25–26 April 2000

  • Durlofsky, L.J.: Upscaling of geocellular models for reservoir flow simulation: a review of recent progress. In: 7th International Forum on Reservoir Simulation Bühl/Baden-Baden, Germany, 23–27 June 2003

  • Durlofsky, L.J.: Upscaling and gridding of fine scale geological models for flow simulation. In: 8th International Forum on Reservoir Simulation, Iles Borromees, Stresa, Italy (2005)

  • Durlofsky L.J., Behren R.A., Jones R.C.: Scale up of heterogeneous three dimensional reservoir description. SPEJ 1, 313–326 (1996)

    Article  Google Scholar 

  • Durlofsky L.J., Jones R.C., Milliken W.J.: A non-uniform coarsening approach for the scale-up of displacement process in heterogeneous porous media. Adv. Water Resour. 20(5-6), 335–347 (1997)

    Article  Google Scholar 

  • Farmer C.L.: Upscaling: a review. Int. J. Numer. Methods Fluids 40, 63–78 (2002)

    Article  Google Scholar 

  • Farmer, C.L., Heath, D.E., Moody, R.O.: A global optimization approach to grid generation. Paper SPE 21236 presented at the SPE Symposium on Reservoir Simulation, Anaheim, CA, 17–20 Feb 1991

  • Farrashkhalvat M., Miles J.P.: Basic Structured Grid Generation with an Introduction to Unstructured Grid Generation. Butterworth-Heinemann, Oxford (2003)

    Google Scholar 

  • Fincham, A.E., Christensen, J.R., Barker, J.W., Samier, P.: Upgridding from geological model to simulation model: review, applications and limitations. Paper SPE 90921 presented at the SPE Annual Technical Conference and Exhibition, Houston, TX, 26–29 Sept 2004

  • Garcia M.H., Journel A.G., Aziz K.: Automatic grid generation for modeling reservoir heterogeneities. SPERE 7, 278–284 (1992)

    Article  Google Scholar 

  • He, C.: Structured flow-based gridding and upscaling for reservoir simulation. PhD Thesis, Stanford University (2004)

  • He C., Durlofsky L.J.: Structured flow-based gridding and upscaling for modeling subsurface flow. Adv. Water Resour. 29, 1876–1892 (2006)

    Article  Google Scholar 

  • Josselin de Jong G.: Singularity distribution for the analysis of multiple-fluid flow through porous media. J. Geophys. Res. 65(11), 3739–3758 (1960)

    Article  Google Scholar 

  • Lambers, J., Gerritsen, M.: An integration of multi-level local-global upscaling with grid adaptivity. Paper SPE 97250 presented at the SPE Annual Technical Conference and Exhibition, Dallas, October 2005

  • Lapidus L., Pinder G.F.: Numerical Solution of partial Differential Equations in Science and Engineering, pp. 405–417. Wiley, New York (1982)

    Google Scholar 

  • Li D., Cullick A.S., Lake L.W.: Global scale-up of reservoir model permeability with local grid refinement. J. Petrol. Sci. Eng. 14, 1–13 (1995)

    Article  Google Scholar 

  • Mahani, H.: Upscaling and optimal coarse grid generation for the numerical Simulation of two-phase flow in porous media. PhD thesis, Imperial College London (2005)

  • Mahani, H., Muggeridge, A.H.: Improved coarse grid generation using vorticity. Paper SPE 94319 presented at the of the 14 Biennal SPE/Europec Conference, Madrid, Spain, June 2005

  • Mahani, H., Ashjari, M.A., Firoozabadi, B.: Reservoir flow simulation using combined vorticity-based gridding and multi-scale upscaling. Paper SPE 110306, SPE Asia Pacific and Gas Conference & Exhibition (APOGCE), Jakarta, Indonesia, 2007

  • Mahani H., Muggeridge A.H., Ashjari M.A.: Vorticity as a measure of heterogeneity for improving coarse grid generation. Petrol. Geosci. 15, 91–102 (2009)

    Article  Google Scholar 

  • Mostaghimi, P., Mahani, H., Firoozabadi, B.: A quantitative and qualitative comparison of coarse grid generation techniques for numerical simulation of flow in heterogeneous porous media. Paper SPE 118712 presented at the SPE Reservoir Simulation Symposium, The Woodlands, TX, 2–4 Feb 2009 (To appear in SPE-RE)

  • Palagi, C.: Generation and application of Voronoi grid to model flow in the heterogeneous reservoirs. PhD Dissertation, Stanford University (1992)

  • Pirzadeh S.: Structured background grids for generation of unstructured grids by advancing front method. AIAA J. 31, 2 (1993)

    Article  Google Scholar 

  • Qi D.S., Wong P.M., Liu K.Y.: An improved global upscaling approach for reservoir simulation. Petrol. Sci. Technol. 19, 779–795 (2001)

    Article  Google Scholar 

  • Renard P., de Marsily G.: Calculating equivalent permeability: a review. Adv. Water Resour. 20, 253–278 (1997)

    Article  Google Scholar 

  • Stern, D., Dawson, A.G.: A Technique for generating reservoir simulation grids to preserve geologic heterogeneity. Paper SPE 51942 presented at the SPE Reservoir Simulation Symposium, Houston, TX, 14–17 Feb 1999

  • Sposito G.: Steady groundwater flow as a dynamical system. Water Resour. Res. 30(8), 2395–2401 (1994)

    Article  Google Scholar 

  • Sposito G.: Topological groundwater hydrodynamics. Adv. Water Resour. 24, 793–801 (2001)

    Article  Google Scholar 

  • Wallstrom T.C., Christie M.A., Durlofsky L.J., Sharp D.H.: Effective flux boundary conditions for upscaling porous media equations. Transp. Porous Media 46, 139–153 (2002)

    Article  Google Scholar 

  • Wen X.H., Gómez-Hernández J.J.: Upscaling hydraulic conductivities in heterogeneous media: an overview. J. Hydrol. 183, ix–xxxii (1996a)

    Article  Google Scholar 

  • Wen, X.H., Gómez-Hernández, J.J.: Selective upscaling of hydraulic conductivities. In: Baafi, E.Y., Schofield, N.A. (eds.) Geostatistics Wollongong, vol. 2, pp. 1112–1123. Proceedings of the Fifth International Geostatistics Congress, Wollongong, Australia, 22–27 Sept 1996b

  • Wen X.H., Gómez-Hernández J.J.: Upscaling hydraulic conductivities in crossbedded formations. Math. Geol. 30(2), 181–212 (1998)

    Article  Google Scholar 

  • Wen X.H., Durlofsky L.J., Edwards M.G.: Upscaling of channel systems in two dimensions using flow-based grids. Transp. Porous Media 51, 343–366 (2003a)

    Article  Google Scholar 

  • Wen X.H., Durlofsky L.J., Edwards M.G.: Use of border regions for improved permeability upscaling. Math. Geol. 35(5), 531–547 (2003b)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Mahani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evazi, M., Mahani, H. Generation of Voronoi Grid Based on Vorticity for Coarse-Scale Modeling of Flow in Heterogeneous Formations. Transp Porous Med 83, 541–572 (2010). https://doi.org/10.1007/s11242-009-9458-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-009-9458-2

Keywords

Navigation